In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer.

نویسندگان

  • Chi Zhang
  • Konstantin Maslov
  • Junjie Yao
  • Lihong V Wang
چکیده

Photoacoustic microscopy has achieved submicron lateral resolution, but its axial resolution is much lower. Here an axial resolution of 7.6 μm, the highest axial resolution validated by experimental data, has been achieved by using a commercial 125 MHz ultrasonic transducer for signal detection followed by the Wiener deconvolution for signal processing. Limited by the working distance, the high-frequency ultrasonic transducer can penetrate 1.2 mm into biological tissue from the ultrasound detection side. At this depth, the signal-to-noise ratio decreases by 11 dB, and the axial resolution degrades by 36%. The new system was demonstrated in imaging melanoma cells ex vivo and mouse ears in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution photoacoustic imaging with focused laser and ultrasonic beams.

We report a photoacoustic imager that utilizes a focused laser beam in combination with a 20 MHz ultrasound focusing transducer to obtain micron-resolution tissue images over a long working distance. The imager is based on a ring transducer that combines ultrasonic and laser beams collinearly and confocally in a monolithic element. The combination of focused laser beam and short pulse irradiati...

متن کامل

Video-rate functional photoacoustic microscopy at depths.

We report the development of functional photoacoustic microscopy capable of video-rate high-resolution in vivo imaging in deep tissue. A lightweight photoacoustic probe is made of a single-element broadband ultrasound transducer, a compact photoacoustic beam combiner, and a bright-field light delivery system. Focused broadband ultrasound detection provides a 44-μm lateral resolution and a 28-μm...

متن کامل

A 3-D High-Frequency Array Based 16 Channel Photoacoustic Microscopy System for In Vivo Micro-Vascular Imaging

This paper discusses the design of a novel photoacoustic microscopy imaging system with promise for studying the structure of tissue microvasculature for applications in visualizing angiogenesis. A new 16 channel analog and digital high-frequency array based photoacoustic microscopy system (PAM) was developed using an Nd:YLF pumped tunable dye laser, a 30 MHz piezo composite linear array transd...

متن کامل

Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor

A laser scanning optical resolution photoacoustic microscopy (LS OR-PAM) system based on a stationary fibre optic sensor is described. The sensor comprises an optically resonant interferometric polymer cavity formed on the tip of a rounded single mode optical fibre. It provides low noise equivalent pressure (NEP = 68.7 Pa over a 20 MHz measurement bandwidth), a broad bandwidth that extends to 8...

متن کامل

In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe.

We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2012